

Improved rearing system of housefly (*Musca domestica*) for the production of shrimps and Huxu breeders

Guangdong Entomological Institute 105 Xingang Road West, Guangzhou 510260, China

Outline of this talk

Introduction System improvements Application technology Future perspectives

Livestock production

8.8 billion chickens (http://www.feedtrade.com.cn) and 735 million pigs (http://www.askci.com/news /chanye /2015/01/21/169367q9a.shtml) were produced for the world market in 2014 in China.

Millions of farmers depend on livestock production for their livelihood.

About 19.2 million tons of chicken manure per year from livestock production every year.

Pollution of the environment.

Feed production in China

In China, there are **1.02 million** tons fish meal (70% of the total feed protein) imported from different countries for feed industry in 2014.

Fish meal price charts in 2014-2015 (from national bureau of statistics)

Solution to this problem

Recycle of the chicken manure into insect proteins as feed for chicken production is a strategy to solve this problem.

Mass production of housefly

Large-scale housefly (*Musca domestica*) production system by using chicken manure is established in China to provide fresh maggots or maggot powder for feeding chickens and shrimps.

Life cycle

Process flow diagram

Semi-automatic production system

Manure treatment

MILITAL

Culture tray preparation

1. Adults for increasing egg production

Improvements: a)Semi-automatic water supply b)Increasing adult density c)Enriched medium for adults

2. Methods for eggs collection

Improvements:a) Clean eggs by using a cloth on the wheat branb) Quantitative weight for next step

System improvements

3. Pretreatment of the chicken manure for maggot production

Improvements:

- a) Reduced possible pathogens
- b) Reduced terrible odor
- c) Reduction of the time and labor

4. Semi-automatic transportation of the containers

Improvements:a) Automatic stacking systemb) Semi-automatic transportation

System improvements

5. Effective larvae rearing

Improvements:

- a) Effective utilization of the rooms
- b) Protected breeding with plastic nets

System improvements

6. Maggot separation

Under low oxygen and high ammonia concentration in the closed rooms, more than 70% larvae escaped from the medium in two hours, depending on the air temperature in the containers.

Effect of oxygen concentrations on the separation rates (%) of housefly larvae at different temperatures

R

Effect of oxygen concentrations on the separation rates (%) of housefly larvae at different temperatures

R

System improvements

7. Maggot microwave drying

Improvement:■3 kg fresh maggots can be dried every 6 minutes

Fertilizer quality

Residue after maggot rearing as an organic fertilizer

Test data of residue after rearing housefly						
Number	Item	Result	Indicators of organic fertilizer			
1	Organic components	54	≥45%			
2	Total nutrient	14.9	≥5.0%			
3	Moisture	37	≤30%			
4	pH	8.4	5.5-8.5			
5	As	0	\leq 15 mg/kg			
6	Hg	0.7	≤2 mg/kg			
7	Pb	50	\leq 50 mg/kg			
8	Cr	10	$\leq 150 \text{ mg/kg}$			
9	Cd	3	≤3 mg/kg			
10	Number of fecal coliforms	<8	≤100 mumbers/g			
11	Mortality of roundworm eggs	100	≥95%			

The residue meets the standard of organic fertilizer if the water content is decreased by drying.

Maggot powder quality

Quality of the maggot powder

Chemical composition of housefly maggot meal						
Number	Item	Maggot powder	Skim maggot powder	Best fishmeal		
1	Crude protein (%)	58.53	66.25	≥60		
2	Fat extract (%)	21.8	3.2	≤10		
3	Moisture (%)	1.1	7.4	≤10		
4	Ash (%)	6.5	9	≤20		
5	Mold (cfu/g)	3.7×10^{2}	3.6×10^{2}	$\leq 3 \times 10^{3}$		
6	Salmonella (cfu/25g)	0	0	0		
7	KOH (mg/g)	3.30	0.6	≤5		
8	Cr (mg/kg)	2.46	0.9	<u>≤8</u>		

Feeding shrimps with fresh maggots

Experimental design:

- **1. Shrimp species:** *Litopenaeus vannamei*
- 2. Industrial shrimp diets replaced by 25%, 50%, 75%, 100% fresh maggots.
- 3. Indoor cultures with containers and aeration system.

Feeding shrimp with maggots Methods:

- 1. Water: T:27±2 °C; salinity:2.0-3.0; DO > 6.0 mg/L; pH 7.8±0.1
- 2. Scale of feeding: 3% of shrimp weight.
- 3. Feeding time: 9:00 and 17:00
- 4. Experimental period: 35 d

Feeding shrimp with maggots Weight of the shrimps

The fresh weights of the shrimps fed with 25% fresh maggots are not significantly different from those with routine shrimp feed.

Feeding shrimp with maggots

Body length of the shrimps

The body length of the shrimps fed with 25% fresh maggots are not significantly different from those with routine shrimp feed.

Feeding shrimp with maggots

Survival rates of the shrimps

No significant difference was found among treatments and the control.

Feeding shrimp with maggots Mortality of the shrimps infected by WSSV (White spot syndrome virus)

25% fresh maggots in the diet significantly decreased the shrimp mortalities at 4 and 5 days when the shrimps were infected by WSSV.

Chickens fed with fresh maggots

Experimental design:

- Species: Huxu breeders
 Industrial diets replaced by 5%, 10%, 15% fresh maggots.
- **3. Indoor cultures.**

Methods:

- 1. Quantity of the feed: 40 g per chicken each time
- 2. Feeding time: 8:00am and 15:00pm
- 3. Experimental period: 270 d

Feeding chickens with maggots

Laying rate:

the control and highest laying rate was found in group receiving 5% maggots .

Feeding chickens with maggots

Feed-egg ratio

Diets containing 5%, 10% and 15% fresh maggots reduced feed-egg ratio.

Feeding chickens with maggots

Fertility and hatchability

Fresh maggot additions significantly increased egg fertility and hatchability.

Feeding chickens with maggots mRNA transcription of immune-related genes in bursa

Higher expression level of *TLR3* was observed in the chickens receiving fresh maggots.

Chickens fed with insect powders

Experimental design:

Treatments	Ratios (%) of maggot, mealworm or fish meal	Protein content
СК	0 (maggot) +0 (mealworm) +100 (fish meal)	17.16%
1	100 (maggot) +0 (mealworm) +0 (fish meal)	17.04%
2	0 (maggot) +100 (mealworm) +0 (fish meal)	15.88%
3	50 (maggot) +50 (mealworm) +0 (fish meal)	17.00%
4	50 (maggot) +0 (mealworm) +50 (fish meal)	17.07%
5	0 (maggot) +50 (mealworm) +50 (fish meal)	17.05%
6	33.3 (maggot) +33.3 (mealworm) +33.3 (fish meal)	16.99%

Chickens fed with insect powders

Laying rate (eggs per chicken)

Laying rates were significantly higher in treatment 1, 2 and 3 than that in the control, indicating that insect powders improved the chicken performance.

Chickens fed with insect powders

Feed-egg ratios

Treatments 1, 2, 3 and 4 can reduce feed-egg ratios.

Manuscripts

- Zhao G.Y., Chen J.H., Su H.Y., Bruggeman G., Fitches E., Kenis M. and Han R.C. Influence of house fly *Musca domestica* larvae as a feed supplement on the performance and immune activation of Huxu breeders. In preparation.
- 2. Zhao G.Y., Chen J.H., Su H.Y., Fitches E., Kenis M. and Han R.C. Improved rearing system of house fly *Musca domestica* larvae. **In preparation**.

Conclusion

- **1.** The improved rearing system can be used for large scale production of house fly *Musca domestica*.
- 2. 5% supplement of the routine feed with fresh larvae significantly improves the chicken performance with high laying rates, fertility and hatchability, and lower feed-egg ratios, and activates the immune response.
- **3.** Insect powders can replace fishmeal for chicken production, based on the chicken performance.

Acknowledgement

The work is supported by:

EU Project "Enabling the Exploitation of Insects as a Sustainable Source of Protein for Animal Feed and Human Nutrition" (PROteINSECT: 312084).

Thank you!

谢谢!