

Prospects and constraints for the small-scale production of fly larvae in West Africa

Marc Kenis

www.cabi.org
KNOWLEDGE FOR LIFE

Poultry and fish producers:

• Feed expensive (70% of the costs), esp. proteins (fish meal, soja, groundnut)

Poultry and fish producers:

Feed expensive (70% of the costs), esp. proteins (fish meal, soja, groundnut)

Smallholder farmers

- Scavenging poultry fed with grains (not always)
- Fish «fed» with organic waste (not always)
- Low growth and yields, high juvenile mortality

<u>Smallholder poultry farmers – Benin (data FSA)</u>

- 44% give feed to their poultry
 - 7% buy protein feed

Smallholder poultry farmers - Burkina Faso (Data IDR)

- 98.8% give feed to their poultry (rapid increase pesticides?)
- 33% buy feed but only 3.6% buy feed with proteins

Farmers are aware of the protein issues

Occasional insect collection during outbreaks :

Farmers are aware of the protein issues

Provision of termites to poultry

- Long tradition in West Africa
- 64% of poultry farmers use termites in Benin (FSA)
- 49-83% in Burkina Faso (IDR)
- 100% in Northern Togo (FFA, limited survey)

Solution: Producing insects

But:

- Only few insects are easily mass produced
- Very few insects can be mass-produced cheaply to concurrence classical protein sources

Ca. US\$ 2 / kg

Three types of flies used for animal feed

House fly (*Musca domestica*)

Black soldier fly (*Hermetia illucens*)

Blow flies (Calliphoridae)

Three types of flies used for animal feed

House fly (*Musca domestica*)

Black soldier fly (*Hermetia illucens*)

Suitable for farmers?

Three types of flies used for animal feed

House fly (*Musca domestica*)

Black soldier fly (*Hermetia illucens*)

Suitable for farmers?

Benin (Pomalegni et al 2016):

- 6% of the poultry farmers already use house fly maggots
- 82% of them are willing to try and the majority are willing to pay
- 12% don't want to try

Farmers

House fly production system at IER, Mali

Maggot's rearing beds (1m²)

Day 1: Substrate in rearing bed for natural oviposition

Many substrates tested, e.g.

- Chicken manure (+ litter)
- Sheep/goat manure with fish offal
- Sheep/goat manure with blood

• Other organic matters ...

Add +/- 20 I. water

Days 2 & 3: Substrate covered

Day 4: Larvae sifted from the substrate using different procedures

Day 4: Larvae sifted from the substrate using different procedures

1Dj Day 4 to 5: larvae left one day to empty their gut

Day 5: larvae are dried in the sun

Day 5: larvae are dried in the sun

Solar drier in Ghana

Larvae can be given to animals fresh or dried

Dry larvae

By-product: valuable compost

System to be adapted to smallholder farmers

Issues related to the natural oviposition substrate system

1. Yield fluctuates with season

C

Mar-13

Apr-13

May-13

Jun-13

Jul-13

Aug-13

Sep-13

Oct-13

Nov-13

Dec-13

Jan-14

Feb-14

Mar-14

Apr-14

May-14

Jun-14

Jul-14

Aug-14

Sep-14

Oct-14

Nov-14

Dec-14

Jan-15

Feb-15

Mar-15

Apr-15

May-15 Jun-15

Jul-15

Aug-15

Issues related to the natural oviposition substrate system

2. Need of a large ground surface

Issues related to the natural oviposition substrate system

3. Potential health issue with the increase of flies around the production system

Can adult rearing solve these issues

In theory yes but ...

Can adult rearing solve these issues

In theory yes but ...

- An efficient and reliable adult rearing system requires
 - Specific facilities with reliable conditions
 - Expertise
- Producing eggs is costly

Black soldier fly - Hermetia illucens

Black Soldier fly production system FfA and U. Stirling

Emilie Devic Basile Bouwassi Gabriel Koko

Adult rearing and egg production

Capture of local fly populations

Adult rearing and egg production

Mating in the sun

Egg collection

Larval rearing

5 days in nursery

8 days in rearing containers

Substrates:

- Manures
- Brewery wastes and other agroindustrial wastes
- Market and domestic wastes

Extraction of larvae

Drying of larvae

Pupae and adult production

Black soldier fly - Hermetia illucens

Advantages and disadvantages of small BSF vs. House fly systems

- +
- Safer, no vector of disease, no human nuisance
- Heavier, high and constant yield
- Grows on more substrates
- Uses less ground surface than HF natural oviposition system
- Prepupae migrate out of the substrate by themselves

- More complicated than HF natural oviposition systems, longer to establish; egg production critical
- Slower development
- Naturally less abundant, natural oviposition more difficult
- Migrating prepupae less digestible, lower % proetin
- Larvae are more difficult to use alive
- Longer to dry

Economic viability

- African systems can already provide maggot proteins at ca. the same price as fish meal (see KULeuven presentation) – more efforts are needed to lower the costs.
- Important to:
 - Minimise the costs of substrates and substrate provision
 - Feed with living larvae (house fly)
 - Valorise the residues
 - Improve techniques at all stages
- Avoid disseminating a technique that is not yet economically profitable or technologically up and running

Social acceptability

• Many consumers are reluctant to eat fish or chicken fed with fly larvae.

Health and safety

Thank you for your attention

